ON RUBIN’S VARIANT OF THE p-ADIC BIRCH AND SWINNERTON-DYER CONJECTURE II
نویسنده
چکیده
Let E/Q be an elliptic curve with complex multiplication by the ring of integers of an imaginary quadratic field K. In 1991, by studying a certain special value of the Katz two-variable p-adic L-function lying outside the range of p-adic interpolation, K. Rubin formulated a p-adic variant of the Birch and Swinnerton-Dyer conjecture when E(K) is infinite, and he proved that his conjecture is true for E(K) of rank one. When E(K) is finite, however, the statement of Rubin’s original conjecture no longer applies, and the relevant special value of the appropriate p-adic L-function is equal to zero. In this paper we extend our earlier work and give an unconditional proof of an analogue of Rubin’s conjecture when E(K) is finite.
منابع مشابه
ON RUBIN’S VARIANT OF THE p-ADIC BIRCH AND SWINNERTON-DYER CONJECTURE
We study Rubin’s variant of the p-adic Birch and Swinnerton-Dyer conjecture for CM elliptic curves concerning certain special values of the Katz two-variable p-adic L-function that lie outside the range of p-adic interpolation.
متن کاملDiagonal Cycles and Euler Systems Ii: the Birch and Swinnerton-dyer Conjecture for Hasse-weil-artin L-functions
This article establishes new cases of the Birch and Swinnerton-Dyer conjecture in analytic rank 0, for elliptic curves over Q viewed over the fields cut out by certain self-dual Artin representations of dimension at most 4. When the associated L-function vanishes (to even order ≥ 2) at its central point, two canonical classes in the corresponding Selmer group are constructed and shown to be lin...
متن کاملThe p-Adic L-Functions of Modular Elliptic Curves
The arithmetic theory of elliptic curves enters the new century with some of its major secrets intact. Most notably, the Birch and Swinnerton-Dyer conjecture, which relates the arithmetic of an elliptic curve to the analytic behaviour of its associated L-series, is still unproved in spite of important advances in the last decades, some of which are recalled in Chapter 1. In the 1960’s the pione...
متن کاملA p-adic analogue of the conjecture of Birch and Swinnerton-Dyer for modular abelian varieties
Mazur, Tate, and Teitelbaum gave a p-adic analogue of the Birch and Swinnerton-Dyer conjecture for elliptic curves. We provide a generalization of their conjecture in the good ordinary case to higher dimensional modular abelian varieties over the rationals by constructing the padic L-function of a modular abelian variety and showing it satisfies the appropriate interpolation property. We descri...
متن کاملOn the elliptic curves of the form $ y^2=x^3-3px $
By the Mordell-Weil theorem, the group of rational points on an elliptic curve over a number field is a finitely generated abelian group. There is no known algorithm for finding the rank of this group. This paper computes the rank of the family $ E_p:y^2=x^3-3px $ of elliptic curves, where p is a prime.
متن کامل